On the classification of quaternary Hermitian LCD codes


This page lists generator matrices of quaternary Hermitian LCD [n,k] codes given in the following paper:
Makoto Araya and Masaaki Harada, On the classification of quaternary Hermitian LCD codes, preprint.

Table 2: Classification for lengths up to 11

nk N N1 N2 N3 N4 N5 N6 N7 N8
42 4 2 2
52 6 2 3 1
3 6 4 2
62 11 3 4 3 1
3 13 6 5 2
4 11 6 5
72 16 3 5 4 3 1
3 36 11 13 11 1
4 36 13 20 3
5 16 11 5
82 25 4 6 6 5 3 1
3 80 16 22 31 10 1
4 176 36 84 49 7
5 80 36 40 4
6 25 16 9
92 34 4 7 7 7 5 4
3 227 25 42 76 55 28 1
4 993 80 305 372 235 1
5 993 176 496 311 10
6 227 80 141 6
7 34 25 9
102 51 5 8 9 9 9 9 2
3 545 34 63 144 140 150 14
4 7454 227 1081 2101 3490 554 1
5 19043 993 4996 9455 3598 1
6 7454 993 4380 2064 17
7 545 227 312 6
8 51 34 17
112 68 5 9 10 11 11 15 5 2
3 1492 51 104 259 325 543 197 13
4 56310 545 3381 8521 25215 17681 967
5 525396 7454 52492 170767 271667 23015 1
6 525396 19043 151868 280517 73967 1
7 56310 7454 35669 13185 2
8 1492 545 941 6
9 68 51 17

Table 3: Classification for length 12(k≠6)

nk N N1 N2 N3 N4 N5 N6 N7 N8 N9
122 95 6 10 12 13 15 21 11 6 1
3 3654 68 146 414 581 1298 868 277 2
4 439007 1492 10369 31140 125753 196104 74001 148
5 14405773(12-5.magma.gz(207.4MB)) 56310 480063 2086894 7114373 4653183 14950
7 14405773(12-7.magma.gz(238.6MB)) 525396 4520230 8275240 1084907
8 439007 56310 303556 79139 2
9 3654 1492 2156 6
10 95 68 27

Table 4: |C(12,6,d)|(d=1,2,3,4,5)

d 1 2 3 4 5
|C(12,6,d)|52539653432801867141827364559503800

Table 5: Classification for dimension 2 (n=13,14,...,50)

n|C(n,2)| |C(n,2,*,1)| |C(n,2,1,>= 2)| |C(n,2,>= 2,>= 2)|
1312295027
14166122143
15210166044
16275210164
17340275065
18436340195
19532436096
206665321133
218006660134
229868001185
2311729860186
24142011721247
25166814200248
26199716681328
27232619970329
28275023261423
29317427500424
30371731741542
31426037170543
32494142601680
33562249410681
34647156221848
35732064710849
368361732011040
379402836101041
3810672940211269
39119421067201270
40134711194211528
41150001347101529
42168321500011831
43186641683201832
44208361866412171
45230082083602172
46255722300812563
47281362557202564
48311362813612999
49341363113603000
50376333413613496

Table 6: Classification for dimension 2 (n=51,52,...,70)

n|C(n,2)| |C(n,2,*,1)| |C(n,2,1,>= 2)| |C(n,2,>= 2,>= 2)|
51411303763303497
52451764113014045
53492224517604046
54538874922214664
55585525388704665
56638975855215344
57692426389705345
58753476924216104
59814527534706105
60883878145216934
61953228838706935
621031789532217855
6311103410317807856
6411989111103418856
6512874811989108857
6613870812874819959
6714866813870809960
68159822148668111153
69170976159822011154
70183438170976112461

Table7: Classification for dimension 3

n|C(n,3)||C(n,3,*,1)||C(n,3,1,>=2)||C(n,3,>=2,>=2)|
1393903654275709
142219893902712781
1553176221984430934
16119549531764466329
1726768711954965148073
1857124826768765303496
19120558757124896634243
2024498221205587961244139

Table 8: |C(5s+t,2,d4H(5s+t,2)-2,>=2)| (t=0,1,2,4)

t \ s 1234567891011
0 0 4 7 15 17 22 23 25 26 27 27
1 1 6 13 20 25 29 31 33 34 35
2 1 6 8 13 14 16 17 18 18
4 2 9 18 26 33 38 42 44 46 47 48

Table 9: |C(5s+t,2,d4H(5s+t,2)-3,>= 2)| (t=0,1,2,3,4)

t \ s 123456789101112131415
0 2 10 22 36 49 60 68 75 80 84 86 88 89 90
1 1 2 11 15 28 32 40 42 47 48 50 51 52 52
2 1 6 16 28 39 47 54 59 63 65 67 68 69
3 2 4 14 18 26 28 33 34 36 37 38 38
4 1 8 12 27 32 45 49 57 59 64 65 67 68 69 69

Table 10: |C(n,k,d)| (n=13,14,15)

(n,k) (13,2) (13,3) (13,4)(14,2) (14,3) (14,4) (15,2) (15,3) (15,4)
d=1 6 95 3654 7 122 9390 7 166 22198
d=2 11 220 29160 12 295 79947 13 419 205367
d=3 13 651 98177 15 952 293566 16 1380 806069
d=4 15 1030 486075 17 1591 1644965 19 2477 4971898
d=5 17 2685 1171975 21 4736 5132359 23 7912 18230789
d=6 27 2637 1294025 33 5686 10425403 39 11075 53126171
d=7 15 1914 127290 23 6787 4835373 27 17504 56708122
d=8 13 156 19 22 1871 183997 32 9309 15426964
d=9 4 2 11 158 18 2906 50831
d=10 1 5 14 28
d=11 2
(n,k) (13,11) (13,10) (13,9)(14,12) (14,11) (14,10) (15,13) (15,12) (15,11)
d=1 95 3654 439007 122 9390 3210375 166 22198 22605000
d=2 27 5732 2332236 44 12805 17147192 44 30976 116330805(part1, part2, part3, part4, part5, part6)
d=3 4 439130 3 2247433 2 10612604
d=4 2
Total 122 9390 3210375166 22198 22605000210 53176149548409

On the minimum weights of quaternary Hermitian LCD codes



This page lists generator matrices of quaternary (unrestricted) [n,k] codes given in the following paper:
Makoto Araya and Masaaki Harada, On the minimum weights of quaternary Hermitian LCD codes, Cryptography and Communications, Volume 16, 2024, Pages 1539–1558.

Table 1: Numbers Nw(n, k, d) and N(n, k, d)

(n,k,d)Generator matrix
(14,5, 8) 9
(15,4,10) 1
(15,6, 8) 3
(16,4,11) 1
(17,4,12) 1
(18,4,12) 26
(22,4,15) 24
(23,4,16) 4
(23,5,15) 3
(24,5,16) 1
(27,4,19) 4
(28,4,20) 1
(30,4,21) 6

Table 7: Numbers of inequivalent quaternary (unrestricted) [n,k] codes

n\k 1 2 3 4 5 6
1 1
2 2
3 3
4 4 7
5 5 13
6 6 22 37
7 7 34 92
8 8 51 223 415
9 9 73 541 2199
10 10 103 1313 14293 38676
11 11 140 3194 103730 962654
12 12 188 7762 772652 26087225

Appendix: orders of the automorphism group of [n,k] codes in Table 7

n\k 1 2 3 4 5 6
1 1
2 2
3 3
4 4 7
5 5 13
6 6 22 37
7 7 34 92
8 8 51 223 415
9 9 73 541 2199
10 10 103 1313 14293 38676
11 11 140 3194 103730 962654
12 12 188 7762 772652 26087225


On the classification of certain ternary codes of length 12


This page lists generator matrices of some ternary codes given in the following paper:
Makoto Araya and Masaaki Harada, On the classification of certain ternary codes of length 12, Hiroshima Mathematical Journal, Volume 45, Number 1, 2016, Pages 87-96.

Theorem 1

Proposition 5



On Some Optimal Linear Codes over F5


This page lists generator matrices of some optimal codes over F5 given in the following paper:
Makoto Araya and Masaaki Harada, On Some Optimal Linear Codes over F5, Discrete Mathematics, Volume 313, Issue 24, 28 December 2013, Pages 2872--2874.

Table 1:

Table 2:

Table 3: